.
Codls‘cent

Generative Software Engineering

Application Development Using Codiscent
Generative Technology and Methodology
A White paper

An Overview of Codiscent’s GES Platform and Agile
Generative Engineering Methodology

Application Development Using CodiScent
Generative Technology and Methodology

Contents
INEFOTUCTION Lttt ettt ettt e st e e e a b et e s sabteeseabbee s abaeeesabaeesaabeeesanbaeeesasaeessnnes 3
Overview of CodiScent’s Tools and MethodOIOgYcoevvveiiiiiiii e 5
(6] g pT o To] aT=T o) K- PP PP PPPPPPPNt 5
V=T gTeTo o] [T 4V AP 7
COAISCONT USE CASESveeeeiiiieeiiiiee ettt e e sttt e sttt e sttt e sttt e st e s sabe e e s s b et e s am b et e e smre e e e sabeeeesanaeeesnaeeesnneeesannenens 9
Database ComPare ULIltYccuuviieei ittt et e e e e e et ra e e e e e seabaaeeeeeeesnstaneeeeeannnes 9
Dojo Browser-based Database INTErfaceccuuieiiiiieiiiiie et e e 14
Enhancement of an Interface to Incorporate Temporal FEAtUres........cocceveeeeeiiiiieeeeeecciieee e 22
Browser-Editor for COBOL File DAtaccocueerieiriienieeiiiesiee sttt sttt st 25
SUIMIMIAIY 1ttt ettt e e e e e e ettt ettt ree s e e e eeeeeetebesbaa s s eeeeeeesaeesessannas s seaeeeseeesanssnannsasseeeeeeesennssnnnnnnnsnseneaens 28
(@0 Yo [T F= WYl Y - T 28
REUSE i 28
AFCNITECEUIAl FOCUS «.eeiiiiiiiee ettt ettt ettt sttt ettt e et e e s st e e s sabeeesaabeeeesabaeeesanseesanneeeean 28
2 0o] T Tg Y- Y=Y =Tl o) o V-SSR 28
Reduced MaintenanCe EffOrtccueoriiiiiieiiieeeee ettt 28
) L] = N Y - VPP UURR 29
Migration and TransSforMatioNoccuiiiiii i e e e ttre e e e e e e rree e e e e e eennraeeeas 29
WOrKIiNG With COAISCONTceiiiiiiiiiiie ettt e e et e e e e e sttt e e e e e s ssaaaaeeeeessnassaeeeeessnsrseeeeeanas 30
160701 = Tor ll 0o Y ol=Y o | APPSO P PP 30

Page 2

Introduction

CodiScent Ltd., a consulting and software development company, has developed proprietary technology
and a complimentary methodology that enable it to deliver business solutions Better, Cheaper and
Faster than alternative traditional methods. This document expands on the material presented in the
previous whitepaper in which CodiScent’s development services were introduced. It focuses on how
CodiScent’s tools and methodology can best be employed to achieve the results described in the
previous paper. This will be illustrated in the context of three example solutions developed with the
CodiScent toolset.

The realization of Better, Cheaper and Faster software development results from several elements of
the CosiScent development tools and methodology:

e Coding Leverage—The generated components of CodiScent solutions may consist of anywhere
from 75% to approaching 99% generated code. Generally, the larger the domain of the problem
being solved, the higher the ratio of generated code will be. Reducing the absolute amount of
code written makes it easier to produce defect-free code (Better), the amount of time necessary
to produce it (Faster) and the cost of producing it (Cheaper.)

The graph, below, illustrates a representative relationship between the size and scope of the
specification set, with number of entities represented as a proxy, and the percent of the
application that is generated in the solution:

Solution % Generated

120

100

80 /

60

/ =% Generated
40 /

20 /

0 T T 1

5 10 50 100 250 500 1000
Entities

Page 3

e Reuse—Another advantage of CodiScent solutions is that it is easy to reuse artifacts, which
contributes to the return on the investment in developing them. Note in the Database Compare
Utility example that the entire solution is reusable. After replacing the original specification
data with a new set of metadata drawn directly from the database system tables, a new, error-
free solution instance is generated in mere moments (Better, Cheaper and Faster.) Reusing the
existing solution cut costs and time to deliver while simultaneously eliminating development
risk.

e Architectural focus— CodiScent’s technology and methodology lend themselves to focus on
defining solution architectures independent of implementing them and results in enforcement
of best practices throughout the code base. This produces greater separation of concerns
among components and more abstract and flexible components that are easier to repurpose
and reuse (Better.)

e Rolling refactoring—A common outcome of repeated iteration in the course of development
using standard practices is accumulation of code that should be refactored but which isn’t due
to expedience. Given the leverage and rapidity with which CodiScent solutions are built,
refactoring takes place over the course of development as a natural result of iterative
refinement. This results in cleaner, more efficient, more reusable code (Better) and the
attendant cost benefits that come with it (Cheaper.)

The advantages, cited above are primary benefits achievable with CodiScent. In addition, there are
second-level benefits to which the primary benefits contribute:

o Reduced Maintenance Effort—Reusability and Architectural Focus both contribute substantially
to the maintainability of CodiScent solutions. This enhances ROI significantly by reducing the
Total Cost of Ownership (TCO) of the solution, which includes acquisition, operational and
maintenance costs over its usable life.

e Staffing Leverage—The Architectural Focus and Reusability of CodiScent artifacts facilitate
optimal programming resource allocation in two ways: first, it allows different components of a
solution to be developed independently of one-another, possibly by programmers that are
expert in specific elements of the implementation technology and, secondly, it allows the most
experienced and capable programmers to develop core solution components that can then be
disseminated and incorporated in multiple projects. Having a library of reusable assets can
result in improved organizational agility in addition to all of the other benefits of CodiScent
technology.

e Migration and Transformation—Separation of concerns is a significant design goal for any
software system. Support for isolation and encapsulation, which is inherent in the CodiScent
approach, lends itself to architecting solutions that can be transformed to accommodate new
infrastructures or provide modified functionality with a minimum of revision.

The remainder of this whitepaper contains three sections:

e An overview of CodiScent’s tools and methodology
e Development use-cases:

= Database Compare Utility
= Browser-based Database Interface using Dojo components and Derby or Oracle
Databases

Page 4

= Enhancement of the previous use-case to incorporate temporal features that enable the
user to visualize the data as it looked at any time in the past or will look in the future
= COBOL text selective parser for processing COBOL copybooks.
e A summary and analysis of time and cost to implement these solutions, stressing the benefits
and ROl of CodiScent tools, as we have identified them, above.

Overview of CodiScent’s Tools and Methodology

Components
CodiScent’s tools include the Projector Template Generator (PTG), the Generative Engineering Studio
(GES), the Relational Metadata Inference Transformer (RMIT) and the Configurable Graphical Interface
Factory (CGIF).

The Projector Template Generator (PTG) is the heart of CodiScent’s delivery system. It employs clear,
intuitive and exceptionally flexible templates which, when linked to specifications (metadata that
describe solution requirements) can generate nearly anything in any format—code, data or text. PTG
output is independent of the rest of the CodiScent platform and can be further developed without using
it; however, there are significant benefits to continuing to use the platform throughout the developed
software’s life.

The Generative Engineering Studio (GES) is an IDE that facilitates building and managing the assets—
specifications, templates and generated code—associated with generative development projects. GES
works with many types of specifications from textual (XML/Excel/Text/SQL Result Sets) to diagrams or
graphical models and can easily interface with third party modeling and metadata repositories, as well.
Working with GES is designed to be completely consistent with CodiScent’s methodology and can
reduce development costs by as much as 60% or more as compared with alternative software
development methods. This results in high-quality software, delivered at very competitive cost and in
short time frames.

The GES employs these two components to link to and map specification data:

The Relational Metadata Inference Transformer (RMIT) is a graphical tool that enables GES users to
define a cohesive relational map for heterogeneous specification data structures so that they can be
used to drive generated output through PTG templates. The ability to coalesce multiple data source
types provides exceptional flexibility to build detailed and nuanced models of the problem domain to
which the CodiScent toolset is being applied. The RMIT also provides flexible analytical support for
viewing and ensuring metadata consistency prior to the code generation process.

The Configurable Graphical Interface Factory (CGIF) is a tool that enables a GES user to define
customized diagramming schemes and link them to specification data structures that can be accessed
through the RMIT and used to drive generation through the GES. This allows a user to employ graphical
models where they are clearer and easier to use than relational or XML data, for instance. Using the
CGIF meta-interface, the designer can define semantics including shapes, shape relationships
(containment/association) and the attributes with which each shape is associated.

Page 5

The schematic, below, shows the relationships among the components:

? ekl
— - I —
D3 D fomres Generated Code E

Templates and Code

Below, is a screen shot of the GES IDE. The split-screen window contains a template on the top and the
code generated from it beneath. Changes in the generated code resulting from modifying the template
can be viewed in near-real time. Behind the popup window are configurable panels that provide access
to object trees for artifacts in the GES repository, such as specifications sources, graphical depictions

and templates.

[Wodeling IDF
Fio EOK Reports Configuation Sources Tesplke Tooks Vew Windows Heb
Variables] CWrtwebContioFaciony A&
X RorriDB
TRerrilSCheck

TsL1
1501

Daaase

Lect * frow

- Check delca for V_DA_PENSON

% 'DLL' db_source,'V_DA_PERSON' as ncityliene,

Page 6

Methodology

CodiScent’s Agile Generative Engineering Methodology (CAGEM) combines acknowledged best-practice
project management practices with an agile lifecycle approach that balances rigorous planning and
control with agile, evolutionary solution design and implementation.

The flowchart, below, portrays CodiScent’s phased delivery approach:

1. D&A 2. Sol Arch

Discovery & Solution

Analysis Architecture

6. UA Test &

3. Solution Prototype 4. Solution Templating, Generationand Evolution 5. Sol Gen & Int Turnover

Conduct
Integration
& UA Tests

Generate
Solution
Components

Convert to Construct
Templates Specifications

Integrate

Develop

Prototype Components

Code Generated

A Integrated
Templates Specifications
Modules P Code

Solution

Generate Revision
Revised Needed
Components ?

Modify Modify
Templates Specifications

Revision
Needed

Deliver Solution

CodiScent projects are conducted in the following phases:

1. Discovery and Analysis Phase: As with nearly any development methodology, the initial phase
focuses on assessing business needs and defining a solution that best fulfills the requirements.
Within CodiScent’s methodology, however, there is also a focus on identifying opportunities to
employ the generation tools to their maximum benefit. Specifically, work processes and
solution elements that repeat themselves within the problem domain are noted and evaluated
as candidates for generation.

Tasks performed in phase include producing a contextual overview of the problem domain,
assessing and documenting candidate requirements, performing a complexity evaluation,
identifying dependencies and estimating incremental benefits expected from each of the
solution’s major capabilities.

Page 7

Overall, this phase is designed to

a. identify all candidate functional and non-functional solution requirements,

b. assess the cost/benefit for each and select the function set to be included in the
solution,

c. define a preliminary solution architecture and produce a component inventory that will
provide the selected functionality,

d. understand interdependencies among the components,
produce baseline scope, time and cost estimates and

f. define a plan for mitigating implementation risks.

This project phase results in artifacts that can be consistent with any requirements modeling
tools that may be in use.

Solution Architecture Phase: with a proposed architecture in mind, the solution is decomposed
into the components that will be required to build it. A strategy for creating each component—
generate, hand-build or purchase and integrate—is identified.

Solution Prototyping—An initial implementation of a minimal but representative set of
functionality is developed. In this step, traditional programming techniques are applied to
create working prototypes of each of the solution’s major components.

Templating, generation and iterative evolution—This step is the one in which much of the
leverage that creates software Better, Cheaper and Faster is applied. In this step:

a. relevant parts of the code implemented for the prototype are translated (refactored)
into templates,

b. specifications are created which may incorporate database metadata and, potentially,
enrichment support data that describes the required solution in the context of the
planned architecture,

c. components are generated from the specifications and templates and then integrated
into a working solution,

d. theintegrated solution is tested and revisions required to modify behavior or enhance
performance are noted,

e. changes to the specifications and templates are made and the solution components are
re-generated and re-tested and

f. this process is iterated until the integrated solution components meet functionality,
standardization and performance requirements.

Solution generation and integration—Once the specifications and templates are finalized the
complete set of solution components are generated, other components are integrated and the

full-breadth solution is integration-tested.

User Acceptance, Deployment and Turnover — The solution is subjected to user acceptance
review and then deployed and turned over to the user organization.

Page 8

CodiScent Use Cases

Database Compare Utility

Use Case: Produce a utility to compare the contents of two databases that contain identical structures
to identify differences between them. This utility is of value to users who need to assess the impact of
executing application functions or ETL processes where the before and after states are represented in
separate table, schema or database instances.

Functionality: Compare the data contained in two database instances and identify added, deleted and
changed records. For changed records, identify and highlight the columns in which values have been
changed. The outputis an SQL result set, with the before and after records positioned one below the
other and a marker (“***’) pre-pended to the changed data value.

Metadata: The metadata for this case consists of the SQL Server metadata extracted from the system
tables. No enrichment data was required for this case; however, had there not been primary and
foreign key constraints in the data, these could have been added to the specifications and imposed
exogenously.

Technology: This solution was implemented as SQL scripts to be executed through the MS SQL Server
management studio.

Here is a sample of the DB metadata in a tabular format:

(x] DataDictionary.xlse [Cqf
Home Insert Page Layout Formulas Data Review View Add-Ins
& cut Arial 10 A A = - =} Wrap Text General
=3 Copy ~ —
Pa'ste F Format Painter B S U- |- &-A- = S Merge & Center = | %~ %
Clipboard Font Alignment Nul
HE G BSEE9- - F F 3 -
F12 - &
A B C D E F G H
1 EntityN Col N DataType Length PK ForeignEntityName FPK

110 ltaly_Name_Addr Gender varchar 50
111 ltaly_Name_Addr GivenName varchar 50
112 ltaly_Name_Addr Middlelnitial varchar 50
113 ltaly_Name_Addr Sumame varchar 50
114 ltaly_Name_Addr StreetAddress varchar 50
115 ltaly_Name_Addr City varchar 50
116 ltaly_Name_Addr Provincia varchar 50
117 ltaly_Name_Addr PostalCode varchar 50
118 ltaly_Name_Addr EmailAddress varchar 50
119 ltaly_Name_Addr TelephoneMumber varchar 50
120 ltaly_Name_Addr Birthday varchar 50
121 ltaly_Name_Addr CF varchar 50
122 ltaly_Name_Addr BirthCity varchar 50
123 ltaly_Name_Addr AccountNo nvarchar 50 PK
124 AcctTransactions TAccountMNo nvarchar 50 PK Italy_Mame_Addr Accountho
125 AcctTransactions TxnDate date PK
126 AcctTransactions trancode nvarchar 10 PK
127 AcctTransactions TxnValue decimal 7.2 PK
128
129
FET

The metadata describes data structures for Customer and Account tables, tied together by the
Customers’ account numbers, as indicated by the foreign entity and key entries for TAccountNo.

Below, is the PTG template for the SQL code that identifies records that exist in one instance (DL1—the
“Before” image) and not the other (DL2—the “After” image,) or vice-versa and the record pairs in which
one or more data values are different:

Page 9

SColumntlamss*, \n#l

[

el

yName, "CHANGED ROWS'
umnMames tl v

]
UNICN ALL
[

sslect E ity 0 Enti D ; [2.5ColumnNames~
from ;

Page 10

And here are some sample sections of the generated code. First, the code that detects missing rows:

T2 ATT
- L
- Teals an - . -
e then else ! en +
a B ~ass en
a y Case n
then '' else ! ' end + a a e
els a v e
- - ' an 14420 +
a as O el ¥ '
' alse ' an + 3 as
i B a 1 ’
1 ' ' an N =
else - S ' 3&
'
e rhan ' alas ' .an &
shan ?1? ' '
S - AR e
v a. As A
'~ shan ! 2 - - -
e else en ' a
. rhen ! = nd <+
3 r T ' e
(a. X

Page 11

And finally, code that identifies inserted rows:

&

Here is the metadata for the second database example, housed in the same specification structure as

the previous example:

1 |EntityName

ColumnName

DataType Length PK

ForeignEntityName FPK

82|V DA _SALES POSITION
83 |V_DA_SALES_POSITION
84 |V DA_SALES POSITION

85 \V_DA_SALES POSITION
86 \V_DA_SALES_POSITION
87 \V_DA_SALES POSITION
88 \V_DA_SALES_POSITION
89 |V _DA_SALES POSITION
90 |V _DA_SALES_POSITION
91 |V _DA_SALES POSITION
92 \V_DA_SALES_POSITION
93 |V _DA_SALES POSITION
94 \V_DA_SALES_POSITION
95 |V DA_SALES POSITION
96 \V_DA_SALES_POSITION
97 |V _DA_SALES POSITION

98 \V_DA_SALES_POSITION
99 |V DA_SALES POSITION

100 V_DA_SALES_POSITION

101 V_DA_SALES_POSITION

102/ V_DA_SALES_POSITION_MATRIX
103 V_DA_SALES_POSITION_MATRIX
104 V_DA_SALES_POSITION_MATRIX
105 \V_DA_SALES_POSITION_MATRIX
106/ V_DA_SALES_POSITION_PRODUCT
107 V_DA_SALES_POSITION_PRODUCT

REGION_OFFICE_ADDRESS1
REGION_OFFICE_ADDRESS?2
REGION_OFFICE_ADDRESS3
REGION_OFFICE_CITY
REGION_OFFICE_ID
REGION_OFFICE_PHONE_NUM
REGION_OFFICE_STATE
REGION_OFFICE_ZIPCODE
ROLE_CD

ROLE_DESC

ROLE_ID

SALES ORGANIZATION_CD
SALES_ORGANIZATION_DESC
SALES_POSITION_DESC
SALES_POSITION_ID
SALES_POSITION_TYPE_CD
SALES_POSITION TYPE_DESC
SAMPLES FG

SFA_DB

VACANT FG
RELATED_SALES_POSITION_ID
RELATIONSHIP_TYPE_CD
RELATIONSHIP_TYPE_DESC
SALES POSITION_ID
PRODUCT_BRAND_ID
PRODUCT DESC

SALES POSITION_ID

n

nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar
nvarchar

nvarchar
it

510
510
510
510
510
510
510
510
510
510
510
510
510
510
510 PK
510
510
510
510
510
510
510 PK
510
510 PK
510 PK
510
510 PK

Page 12

And, here is the part of the code that detects deleted rows that was generated from it:

' a ACCEDT_SHIDPMENTS_FG, a ATRPORT, = BULE_ADDRESS1,
.EULK_ADDRESSZ, s .BULK_CITY, . EULK_DHONE,
.BULK_POSTAL_CD, a.EULK_STATE,a EULE_ZID,
.BULK_ZID4,a.CARCO_DT,a.CARCO_]

VE,

FIRST_NIME,a.FULL_NIME,
[OME_ADDRESS1,

HOME_CITY,

-IMS_FUID,=.IMS GUID, =.JOE_CODE,

-JOB_DESCRIPTION, 2.J0B_TITLE, 2 .LAST_NAME,

-MATL ADDRESS1 2,a MAIL CITY,

MATL_STATE MAIL_ZIP,a.MARITAL_ STATUS,

-MARSTERS_FG, = .MIDDLE NAME, a MILITARY BRANCH,
M{ILITARY_END_DATE, a.MILITARY_ RANK, s MILITARY START_DATE,
-PENDING TRANSACTION TYPE,=z.PREFERRED _NRME,K = PREFIX,
REHIRE DATE, =.SALES_POSITION_ID SOURCE,
-TERMINATION DRTE, =
-WORK_STATUS

)N a join

.V_DA_DERSON =

7_DA_DPERSON b bx
x .EMPLID

Here is the output that results from running the generated code. Each pair of rows shows the analogous
rows from both sources, as determined by matching their primary keys, and differences in column
values are highlighted by four asterisks:

[Results _f_q Messages
db_source EntityName Status ACCEPT_SHIPMENTS_FG ~ AIRPORT = BULK_ADDRESS1 BULK_4DDRESS2 BULK_CITY BULK_PHONE = BULI
1 DL1 V_DA_PERSON CHANGED ROWS Y NULL **Changed 16714 E. Sprague Avenue Spokane Valley 5094872772 9903
2 pL2 V_DA_PERSON CHANGED ROWS Y NULL “Meradale Self Storage 16714 E. Sprague Avenue Spokane Valley 5094872772 9903
3 pL1 V_DA_PERSON CHANGED ROWS N NULL Storage USA-Unit 3070 201 B4th Street ““Brooklyn South 7187484433 11221
4 pL2 V_DA_PERSON CHANGED ROWS N NULL Storage USA-Unit 3070 201 64th Street **Brooklyn 7187484439 11221
5 bL1 V_DA_PERSON CHANGED ROWS Y NULL Storage US4 201 B4th Street Unit 3143 ““Brooklyn South 7187484433 11221
& pL2 V_DA_PERSON CHANGED ROWS Y NULL Storage USA 201 B4th Street Unit 3143 “*Brooklyn 7187484433 11221
7 pL1 V_DA_PERSON CHANGED ROWS Y NULL Soma Self Storage 1475 Mission St. ““Brooklyn South 7187484433 9410
8 DL2 V_DA_PERSON AN ¥ NULL Soma Self Storage 1475 Mission St. **Gan Francisco 7187484499 3410
9 DL1 V_DA_PERSON | CHANGED ROWS | Y NULL Extra Space Storage Unit 201 64th St. Unit 3110 ““Brooklyn South 7187484433 11221
10 DL2 V_DA_PERSON CHANGED ROWS Y NULL Extra Space Storage Unit 201 64th St. Unit 3110 **Brooklyn 7187484439 11221
1 DL V_DA_PERSON CHANGED ROWS Y NULL 201 B4th Street Unit #3006 **Brooklyn South 7187484439 1122
12 DL2 V_DA_PERSON CHANGED ROWS Y NULL 201 Bdth Street Unit #3006 **Brooklyn 7187484433 11221
& 2
@ Query executed successfully, ZEEV{MODEL (10.0 RTM) ZEEV\ZeevAdministrator,.. DL1 00:00:03 12 rows
v

Once the specifications (extracted from the database system tables) and the template were in place for
the initial solution, the second instance for the five-table example was generated from the GES in
literally, a moment.

Page 13

Dojo Browser-based Database Interface

Use Case: Create a browser-based interface that provides data browsing and editing of a relational
database with support for parent-child entities. This solution would be of value to anyone that needs to
maintain RDBMS data for which a pre-built GUI interface does not exist.

Functionality: The solution allows a user to filter, browse, insert, update or delete data in the database.
The data presentation automatically adjusts to account for table-level relationships represented as
constraints in the database or defined in enrichment data in the Specifications.

Solution features include:

e amenu for accessing main screens,

e tabular or single screens for each table for viewing, adding, deleting or updating table rows,
e data selection screens and drop down menu for type-bound attributes,

e validation checks at the record level,

e search and filter services,

e parent- child navigation links,

e parent-child and selector-entity composite displays, which appear as a parent record with child
rows in linked tabular views or a selected object and its entity details in a side panel and

e history or log table generation with supporting code to manage database transactions.

Metadata: The metadata for this case consists of the metadata extracted from the database system
tables. Enrichment data consists of information used to identify composite entities (logical entities
represented as multiple columns or rows in a number of related tables) and table- or entity-level
business rules.

Technology: This solution was implemented as an MVC architecture in Java web technology with a Dojo
interface layer.

This solution is a good example of how the interplay between enhanced specification data and
templates can be used to maintain architectural focus and minimize development time and
maintenance effort over the life of the solution.

The base specification data consists of the data structure of the database. The enhancement data
consists of identifying navigation links, identifying composite entities and assigning them to a specific

visual display objects in the application interface.

The templates create code that supports data selection, navigation, and display.

Page 14

Here is a diagram of the specification data model. Note that the tables in blue denote database
metadata and the tables in orange denote enhancement data:

Modeling IDE - [Model:DBModel]
o' File Edit Model Tools ‘Windows Shape Diagram

Dictionary

EntityName
AttributeName
TableMame
ColumniName
Attribute Type

éﬂrib_m%Label
Eojuire:
MultiToOne CompositeObjects
JavaDataType =
WJavaDataTypeNative Orl:t]gctllame
ISQLDataType Ei Name
FKTableName |AttributeName
FKEntityAttributeName Attribute AliasName
FKERtityName rid
FKColumnhName GridD
AttributeDefaultyalue anel

In'iew ComponentRole
AftributeRole
Attributel ength
Pattern

DataTypes

DataType
Pattern

Page 15

The screenshot, below shows the database metadata and some of the enhancement data behind the
specification data model:

| Analyze: ObjectView

WGroup_4 ACONST ObjectName ObjectComponentNa ObjectittributeMN ame EntityName
NavEntityName AttributeMultiOrder AttibuteN ame AttributeLabel AttributedliasM ame Attributelength AttributeD efaulty alue
AttributeRole AttributeType ColumnName FKEntityattributeNam FKColumnName FKEntityName FKT ableName
FKDescColumnName Grid GridlD ComponentRole Panel PanelCount MultiPanelObject
InView JavaDataType JavaDataTypeNative MultidttributeControl MultiToOne NavAttibuteN ame Patten
PK Required SingledttributeControl - GWTControl GWTControlUIBinder SOLDataType TableName

Page 16

Here is one of the templates from which Dojo code is generated:

5+ | Modeling IDE - [WJEntityJsp]
o-! File Edit Reports Configuration Sources Template Tools View Windows Help

| < pocTYPE hewi>
[<html>
<head>
<link href="menu assets/styles.css" rel="stylesheet" type="text/css">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>{EntityNamei Page</title>
<script type="text/javascript" src="jsSupportlibrary.js"></script>
</head>
<body>
$Include (WTHenu) ¢
<% GenericResultSet tgrs;
frameworkManager _a = new frameworkManager (request response);
JEntityfEntityName$ afEntityNames;
if (!_a.isDefinedVariable("efEntityNames")) { _a.createNewVariable("ejEntityName$" new JEntitySetManageriEntityName$()); }
JEntitySetManagerfEntityNanef s$EntityName$ = (JEntitySetld r$ EntityN:)} _a.getVariable("e$EntityName$");
if {_a.isPostBack("pbfEntityNames")) {
a$EntityNanef = (JEntity$EntityNames) s{EntityNamef.currentJEntity;
ajEntityNames . seciNonIDAttributeNane$Str(_a.getParameterStri{"fAttributeNames")); “\n]
_a.processiction{siEnticyNames);
afEntityNanef = (JEntityiEntityName$) s${EntityName?. currentJEntity; // could have changed due to update.
} else ([
_a.selectSingle(s{EntityName$);
a$(EntityName$ = (JEntityiEntityName$) siEntityName?.currentJEntity;

}
3>
<hl> $EntityName$ Editor</hl>
<form name="MainForm" action="WJEntity$EntityNanes.jsp">
<input i name="_postback" id="_postback" walue="pbfEntityNames" />
<input i back" id="_back" wvalue="WJEntitySetManager$EntityName$. jsp" />
<input i id="_history" value="WJEntityHistory{EntityNames$. jsp" /=
<input i selectedItenID" id="selectedItenID" walue="" />
<input i _action" id="_action" walue="" />
<table border="0">
<thead>
<tr>
<ftr>
</thead>
<tbody>
<tr>
<td>$NonIDAttributeNane$ </td>
<td><input type="text" name="{NonFKittributeName$" id="${NonIDAttributeName$" value="<%i=aj{EntityName$.getiNonIDAttrib
<td>
<select name="§{FKittributeName$" id="{NonIDittributeName$" >
tgrs = ajEntityName?.getTypeSetiFRAttributeNanes ().getSelectNK(); %>
<% while{tgrs.next(}))
i

Page 17

Here is a screenshot from the JavaBean IDE showing the scope of the Dojo code generated by the GES:

® JavaWeb - NetBeans IDE 7.2.1

File Edit Yiew Navigate Source Refactor Run Debug Profle Team Tools Window Help }'Qv
NEES D¢ T D&
Projects x | Services | Files | 2|isp| [jsDoxControllerjs_x | [€] JListiDvalue.java x | [€] CISONParser.java x | [&] JEnti lueSample.java x |] WIEntityDiscountCode.jsp x| =
g3 Web Pages || p— ... VH . =
s i Source | History 5 QR
- dijit html head script _ ;
) dojo 35 </style> Am
#60 dojox 36 [<seript type="t =
#-2) menu_assets 37 hideFlicker ("prelo :
g util 38 </script>
DragandDrop.svg 39
) Pol0.isp 40
B PolOL.jsp a1 <%
@ TestPTG.jsp 4z frameworkManager _a = new frameworkManager (recquest,response): =
(] WIEntityContact.jsp 43 JEntitySetManagerDiscountCode aSetManagerDiscountCodeMain=(JEntitySetManagerDiscountCode) _a.getl
Eﬁ] WIEntityCustomer . jsp 44 aSetManagerDiscountCodeMain.setComponentRole ("Main”) B
(8] WIEntityCustomerOrder.jsp 45
@j WIEntityCustomerPanel. jsp 46
@ WIEntityCustomerView.jsp 47 JEntityDiscountCode aDiscountCode=null;
B WIEntityDiscountCode. jsp 48
(] WIEntityHistoryCantact.jsp 43 if (_a.isPostBack("phDiscountCode”)) { 3
(8] WIEntityHistoryCustomer.jsp 50 if (_a.isEdit())
E@] WIEntityHistoryDiscountCode. jsp 51 {
] WIEntityHistoryManufacturer.jsp 52 aDiscountCode = (JEntityDiscountCode) aSetManagerDiscountCodeMain.currentdEntity;
@] WIEntityHistoryMicroMarket. jsp 53 aDiscountCode.setDiscountCodeStr (_a.getDataParameterStr ("Discount 1e"))
@ WIEntityHistoryNameValueSample.jsp 54 aDiscountCode.setRateStr (_a.getDataParameterStr ("Race”))
5] WaEntityHistoryProduct.jsp 55 aDiscountCode = (JEntityDiscountCode) aSetManagerDiscountCodeMain.currentdEntity; ald
(8] WIEntityHistoryProductCode. jsp 56 ¥
8] WaEntityHistoryPurchaseOrder.jsp 57 } else {
@ WIEntityHistoryXTest.jsp 58 String cnd = _a.getSelectedItemId():
(] WIEntityManufacturer.jsp 59 aSetManagerDiscountCodeMain. getSelectSet (cnd) ;
Eﬁ] WIEntityMicroMarket. jsp 60 aSetManagerDiscountCodeMain. iterateSelectSingle (
8] WIEntityNamevalueSample.jsp 61
(] WEntityProduct.jsp 62 ¥
(] WaEntityProductCade.jsp 63
{B] WIEntityPurchaseOrder. jsp 64 5>
(B WIEntitySetManagerContact.jsp 65
(] WIERtitySetManagerCustomer.jsp v|| 6601 <scripe>
o - TS g = o 67 var sComponents = new JSONSetManager():
— e = 68 var slavigations = new JSONSetManager () :
(&3] script Al oo
| &3 script = by
= 71
72 v
| [
=3 divid=nl Output x| Search Results =
=3 divid
ig span v/
Fiters: | O |[8 |[&
@ 38136 |INs

Page 18

Finally, below are a series of screenshots of the generated solution:

Main Menu:

Edt View Back Navigations Home Tools Contact

| Current Time

Contact
Customer
CustomerOrder
CustomerPanel
CustomerView
DiscountCode
Manufacturer
MicroMarket
NameValueSample
Product
ProductCode

PurchaseOrder

Page 19

Customer, single record view:

Edit View Back INavigations Home Tools Contact

‘ Current Time
Name Small Bill Company
Addresslinel 8585 South Upper Murray Drive
Addressline2 P.O. Box456
City Alanta
CreditLimit 80000
DiscountCode L
Email www.smallbill example.com
Fax 555-555-0176
Phone 555-555-0175
State GA
Zip 12347

Customer, multi-record view:
Edit View Back Navigations Home Tools Contact

\ Current Time

Small Bil Company

Wren Computers

Hame Addressline1

Jumbo Eagle Corp 28 EverGreen Place 2

New Enterprises 754 Main Street

8585 South Upper
Murray Drive

8989 Red Albatross
Drive

Bob Hosting Corp. 65653 Lake Road

Addressline2

Suite 51240000

P.O. Box 5678

P.O. Box 456

Suite 9897

Suite 2323

City CreditLimit

Fort Lauderdale 20000
Miami 10000

Alarta 80000

Houston 25000

San Mateo 65000

DiscountCode

=z

=

H

jumboeagle@e>

WAWWY.NEW.EXE

vy smallbill e

WAV AVTENCOr

. bobhos

A

v

Page 20

Customer-Order:

Edit View Back Navigations Home Tools Contact

’ Current Time

Name
Jumbo Eagle Corp
New Enterprises

Small Bil Company

‘Wren Computers

Early CentralComp
John Valley Computers

Ol Moria Drnduictinne

< >

Customer FreightCompany Orderllum Product Quantity ippit st

Bob Hosting Corp. Slow Snail 10398006 Printer Cable 80 2011-05-24 55.00 2011-05-24
Bob Hosting Corp. Slow Snail 10398007 24 inch Digttal Monitor 120 2011-05-24 £5.00 2011-05-24

Page 21

Enhancement of an Interface to Incorporate Temporal Features

Use Case: The database used in the previous case has structures (parallel tables in which historical
images of transacted records for selected base tables are maintained) that allow for representation of
data as it appeared at any time in the past, as it appears currently or as it will appear at any point in the
future. The ability to view temporally-filtered data is valuable to users wishing to visualize the state of
the data juxtaposed with other events, such as a time series of financial market transactions. The ability
to view future states is an enhancement that may be useful for planning and modeling policies to be
implemented in the future, such as a proposed realignment of sales territories.

Functionality: The requirement for this use case is to add functionality to the previously-built interface
that preserves the users’ ability to filter, browse, enter or edit data and adds the ability to limit
operations to a subset of data as it either did or would appear at a selected point in time.

This solution accommodates significant complexities in terms of the SQL required to support the
temporal features. The solution features include:

e all of the interface features of the previous use case,

e data filtering functions that support normal SQL selection semantics and incorporate the ability
to apply them to a time-specific subset of the data

e complex joins, which return the relevant records for the join from each table, which adds a
significant set of constraints,

e data management filters that ensure that only relevant values appear in drop down and
selection controls and

e data transaction operations that update the temporal history for transactions on tables that are
logged.

Metadata: The metadata and enrichment data for this case are the same as for the previous example.
The specifications consist of metadata extracted from the database system tables and enrichment data
consists of information used to identify composite entities (logical entities represented in a number of
related tables) and table- or entity-level business rules.

Technology: This solution was implemented as an MVC architecture in Java web technology with a
JavaScript and DOJO interface layer.

Page 22

The GES interface showing the specification metadata behind the temporal database:

% Analyze: Dictionary

Close Analyze i Recalc i Resize Project

Entitylame ~ Attributellame - TableName . ColumnName: - AttributeType: | PK - AttributeLabel ' Required * MultiToOne | JavaDataType - JavaDataTypeNative SOLDataType

Column Selscton Condiions

23 | EntityName AttributeName TableName ColumnName AttributeType

PK AttributeLabel Required MuliToOne JavaDataType JavaDataTypeNative SOLDataType
FKTableName FKEntity: FKEnti FKC: AttributeDefaultValue IriView AttributeRole:

AttributeLength Pattern

[Number of records = 56

Here is a template that performs temporal data selection:

select Id,
[5~ColumnName$ SAliashAttributeNameS~™, \n#03]
[e ShliasRttributeName$ TR S~FEColumnName$ ~\n]
from

select [main.S$PRColumnName$ as ID],
[SEntityAliasName$.SColumnName$ SREliashttributeName$ ~\n, #02]
[, SFKEntityName$.S$FKDescColumnNames $AliasAttributeName$ TR $~FKColumnName$ ~\n]
ymain.ts,main.trn
from S$TableName$ HIST main
[left join (select * from $FKTableName$ Hist
where ts = (select max(ts) from $FKTableNa.me$_Hi5t h$FETableNames
where [SFKTableName$ Hist.SFKColumnNameS$=h$FKTableNames$.SFKColumnName$] and ts<=Q@TS@)
and trn='I'
) SFEKEntityNames on Main.SColumnName5S=5FKEntityNames.SFEColumnNames ~\n]
where main.ts = (select max(ts) from $TableName$ hist h
[where main.S$PEKColumnName$=h.S$PEColumnNames and ts<=@T58])
and main.trn='I'
) x
BCONDITIONSE
[order by SNEAttributeName$ -,]

Page 23

And here is some of the SQL code generated from it:

select OID, Id,ts,trn,
Available, Description, Manufacturerld,
Markup, ProductCode, ProductId,

PurchaseCost, QuantityOnHand
f ManufacturerId TR

f ProductCode TR

from (

select main.PRODUCT ID as OID,main.ID as ID,
main.AVAILABLE Available , main.DESCRIPTION Description

nain.MANUFACTURER ID ManufacturerId , main.MARKUP Markup

pain.PRODUCT CODE ProductCode , main.PRODUCT ID ProductId

pain.PURCHASE COST PurchaseCost , main.QUANTITY ON HAND QuantityOnHand
, Manufacturer.NEME ManufacturerId TR
ProductCode . DESCRIPTION ProductCode TR
,main.ts,main.trn
from Product HIST main
left join (select * from MANUFACTURER Hist
where ts = (select max(ts) from MANUFRCTURER_HiSt hMANUFACTURER
where MA_J?ACTL'RER_HiSt.MEA_JFACT'JRER_ZD:hMA_JFACT'JRE.R.MEA_JFACT'JRER_ZD and ts<main.ts)
and trn='T'
) Manufacturer on Main.MANUFRCTURER_ID:Matufa:turer.MANUFACTURER_ID
left join (select * from PRODUCT CODE_Hist
where ts = (select max(ts) from PRODUCT CODE_Hist hPRODUCT CCDE
where PRCDUCT CODE_Hist.PROD CODE=hPRCDUCT CODE.PROD CODE and ts<main.ts)
and trn='I'
} ProductCode on Main.PRODUCT CODE=ProductCode.PRCD_CCDE

) %
order by Id

Here is an example of temporally-filtered output from the enhanced solution, a Customer record, with
timestamp selection:

Edit View Back Navigations Home Tools Contact

As of 1510312013

Address | Information

Addresslinel | 28 EverGreen Place 2
Addressline2 | Suite 51240000

City Fort Lauderdale

Email Jumboeagle@example. comn
Fax 305-555-0189

Phone 305-555-0188

State KK

Zip 95117

Page 24

Browser-Editor for COBOL File Data

Use Case: There is a tremendous amount of data residing in COBOL-formatted files. While mainframe
browsing and editing tools exist, many organizations would be well served to have a solution accessible
through a standard internet browser.

Functionality: This solution provides the ability to parse a copybook and populate the specifications
with metadata extracted from it in order to generate a program that has the ability to parse, view and
edit data stored in native COBOL files in a browser-based GUI interface.

Metadata: The metadata for this case consists of relational, tabular or XML data extracted from COBOL
copybooks. The parser that extracts the metadata is represented in a state machine diagram that after
relational transformation becomes a program that can parse copybooks and present data extracted
from COBOL data files.

Specification Enrichment Data: None was required in this case.

Technology: C# GUI interface.

Page 25

The diagram below depicts a state transition diagram that is used to control the parsing of the
relationships contained in a COBOL copybook:

B3 Modeling IDE EEX

File Edit Model Tools Windows Shape Diagram

= NHibemate

£8 Model:CobolCopyBookParse [?”EI&I |12

—=Zlates
= J Class
Tokens Mapplng
5 biectsTest
TPIC o,
TPICTURE EntComplexType
i
‘Account
Entity
Menu
BDMLXML
ModelGen
TypeSet

Lt
TREDEFINES
TSELECT
TKEY'

RetrievelnsuredClaims
PascalSample
xmiSample
~ fonni
es
HibrenateS ample
ccount
nt
prtComplexType
o
biect
i laim:

ascalSample
fmiS ample

ain
TOCCURS Mapping

IHibemate

Entity
RetrievelnsuredClaims
PascalSample

pls
CobolCopyBookParse
obolCopyBookParseAbstraction
SON
plates
CSharpCode
StateMachine
Tabl
DLGenSample
es
¥ Brates
FarserTransitions
ParseToken
Tabl
DLGenSampleDB

EParserState ParserToken ParserTransition

Page 26

The diagram below shows the C# interface displaying a record from the COBOL file:

Menu

L JC) 0 [Back) [reemp | [racomp | [FepePT |

FGE-EMP-KEY FGE-COMPANY [o1 |
FGE-EMPKEY FGE-NUMBER [10034 |
FGE-EMPKEY FGE-REC-TYPE M \
FGE-ALT-KEY FGE-LASTNAME |MAREE |
FGE-INITIALS [aa |
FGE-TITLE 1 |
FGE-SEX [M |
FGE-MARRIED [|
FGE-SSNUMBER 438748274143 |
FGE-ADDR FGE-STREET |3MECURIUS ST SUNNYSIDE | |FGEEMPRECFGE-ADDR v/
FGE-ADDR FGE-CITYSTATE | ‘
FGE-ADDR FGE-ZIP-CODEX 027613436543 | |FGE-EMPREC FGE-ADDR FGEZIP{ v |
FGE-PHONE [343:8543 |
FGE-FROM-DTE [13920301 |
FGE-DEPT-NUM [i] |
FGE-BITMAP [FaMANT |
FGE-DOB [19711012 |
FGE-DLM | 13330301 |
FILLER [|

Page 27

Summary

The use-cases presented in this whitepaper each demonstrate the benefits we identified in the
Introduction. In each case, employing CodiScent tools and methodology enhanced the return on the
investment in implementing the solution. Here are some highlights of how benefits were realized in
some of the use-cases:

Coding Leverage

Reuse

This benefit accrues in every case. In the Database Compare use-case, the template, which
generates SQL code to identify records not in both tables or records containing differing values,
was 58 lines. 256 lines of code were generated from it for the two-table example and 1,762
lines of code were generated for the five-table example. The generated to hand-written ratio
and percentage of generated code for the examples are 4.6:1 and 81.5% and 30.4:1 and 96.8%,
respectively.

In the Dojo Database Interface and Temporal Extension use-cases, a variety of code, including
SQL, Java and Java Script was generated at ratios exceeding 98% of the total code base.

The Database Compare use-case is an excellent example of CodiScent solution reusability. The
generation process and its ability to produce rapid, evolutionary, full-scale iterations
contributed to the ability to prototype, run, test and revise the solution as it was developed and
ultimately produce an error-free implementation. Overall, this solution took less than two hours
to develop and less than five minutes to replicate for a second instance.

Reusability is also represented in the Temporal Extension use-case. When enhancing the
solution to incorporate temporal filtering, the coders were able to revise the code layer that
communicates with the database and make minimal modifications to the presentation layer.

Architectural Focus

The Dojo Database Browser demonstrates this benefit in that the implementation closely maps
to the MVC model. It also provides good separation of responsibilities, which would allow
programmers to change the presentation of a logical entity quickly and easily by modifying the
specification data or structure without revising the templates.

Rolling Refactoring

In the Database Compare use-case the initial solution was built to identify rows in which
changes had occurred and then enhanced to identify the columns in which they had occurred.
Modifying the solution templates and then regenerating the entire solution automatically
refactored the result.

Reduced Maintenance Effort

The two versions of the Database Compare use-case demonstrate how CodiScent generative
engineering can minimize maintenance effort. The initial version of the solution identified
records that were missing or had changed values. The second version contained code to
annotate the columns in which the differing values occur. The maintenance effort to implement
the second version was limited to the SQL templates and was completely independent of any of
the other solution components. Similarly, the implementation of the second solution instance,

Page 28

consisting of the five-table example, was nearly maintenance-free, requiring only regeneration
of the specification dataset.

Staffing Leverage

Although both solution instances in The Database Compare use-case were implemented by the
same programmer, it could have easily been someone else. This would have allowed the
original developer to focus on solving other problems while the second solution instance was
implemented.

In the Dojo Database Browser use-case, templates used to generate Dojo interface code can be
shared and reused by multiple programming groups in a black box fashion. Therefore, the
templates can provide significant Staffing Leverage.

Migration and Transformation

None of the use-cases are examples of Migration and Transformation, specifically; however, it is
easy to see how the Architectural Focus and extensibility of the CodiScent tools lend themselves
to supporting them. Such solutions require interfaces to the source and target data repositories
and a transformation engine in between and CodiScent generative solutions are perfect for
creating them. If the structure of either the source or target change, the solution can be
modified quickly to adjust the interface on either side, revise data transformations or revise the
source to target map, as necessary.

Page 29

Working With CodiScent

Given the proven value of employing CodiScent tools, methodology and services to deliver solutions,
what remains to be considered is how to select the best model to meet the need in a particular
situation. The service models cited in the initial whitepaper provide a range of options with varying
benefits:

Turnkey Development is most appropriate for implementing a solution with the expectation of
infrequent updates or modifications. The benefit of Better, Cheaper and Faster development is
achieved in terms of the initial cost to implement and opportunities to realize the secondary
benefits of reduced maintenance and ability to migrate or transform the solution are preserved
as long as the original solution artifacts are maintained.

Wizard Implementation is appropriate for implementing a solution with a moderate
expectation of updates or modifications and/or the desire to be able to generate additional
solution instances within a limited specification domain. As a result, Reusability and
Architectural Focus play a role in the delivered solution. In addition to the benefits associated
with Turnkey Development, reduced maintenance, an enhanced ability to migrate or transform
the solution and staffing leverage are also achieved.

Productization is a combination of consultive and implementation services. In addition to
rationalizing fragmented and redundant work processes, this solution provides the immediate
and longer-term benefits of a Wizard Implementation.

Control Center Implementation is a more comprehensive version of a Wizard implementation
that addresses a broader problem domain than is normally appropriate for a Wizard. It provides
a similar but deeper set of the same benefits as a Wizard Implementation

GES Adoption provides the full set of benefits offered by the CodiScent toolset and
methodology. The services are similar to those of a substantial turnkey or control center
implementation but are largely focused on implementing a test case prototype as a training
exercise, conducting formal education sessions and mentoring selected customer IT staff.

Contact CodiScent
Visit our website to see working demos and learn more about our technology and services, contact
CodiScent via email or contact our principals directly:

Tel Aviv: New York:

Zeev Chared, Founder and CEO Howard M. Wiener, Executive Vice President for the Americas
CodiScent Ltd. CodiScent Ltd.

www.codiscent.com www.codiscent.com

Mobile: 011 972 50 752 3070 Office: (914) 723-1406

Email: zeev@codiscent.com Mobile: (914) 419-5956

Email: howard.wiener@codiscent.com

Page 30

http://codiscent.com/
mailto:info@codiscent.com
http://www.codiscent.com/
mailto:zeev@codiscent.com
http://www.codiscent.com/
mailto:mhoward.wiener@codiscent.com

