

Application Development Using Codiscent
Generative Technology and Methodology
A White paper

An Overview of Codiscent’s GES Platform and Agile
Generative Engineering Methodology

Page 2

Application Development Using CodiScent
Generative Technology and Methodology

Contents
Introduction .. 3

Overview of CodiScent’s Tools and Methodology .. 5

Components .. 5

Methodology .. 7

CodiScent Use Cases ... 9

Database Compare Utility ... 9

Dojo Browser-based Database Interface .. 14

Enhancement of an Interface to Incorporate Temporal Features ... 22

Browser-Editor for COBOL File Data ... 25

Summary ... 28

Coding Leverage .. 28

Reuse .. 28

Architectural Focus ... 28

Rolling Refactoring .. 28

Reduced Maintenance Effort .. 28

Staffing Leverage .. 29

Migration and Transformation .. 29

Working With CodiScent ... 30

Contact CodiScent ... 30

Page 3

Introduction
CodiScent Ltd., a consulting and software development company, has developed proprietary technology
and a complimentary methodology that enable it to deliver business solutions Better, Cheaper and
Faster than alternative traditional methods. This document expands on the material presented in the
previous whitepaper in which CodiScent’s development services were introduced. It focuses on how
CodiScent’s tools and methodology can best be employed to achieve the results described in the
previous paper. This will be illustrated in the context of three example solutions developed with the
CodiScent toolset.

The realization of Better, Cheaper and Faster software development results from several elements of
the CosiScent development tools and methodology:

 Coding Leverage—The generated components of CodiScent solutions may consist of anywhere
from 75% to approaching 99% generated code. Generally, the larger the domain of the problem
being solved, the higher the ratio of generated code will be. Reducing the absolute amount of
code written makes it easier to produce defect-free code (Better), the amount of time necessary
to produce it (Faster) and the cost of producing it (Cheaper.)

The graph, below, illustrates a representative relationship between the size and scope of the
specification set, with number of entities represented as a proxy, and the percent of the
application that is generated in the solution:

0

20

40

60

80

100

120

#
Entities

5 10 50 100 250 500 1000

Solution % Generated

% Generated

Page 4

 Reuse—Another advantage of CodiScent solutions is that it is easy to reuse artifacts, which
contributes to the return on the investment in developing them. Note in the Database Compare
Utility example that the entire solution is reusable. After replacing the original specification
data with a new set of metadata drawn directly from the database system tables, a new, error-
free solution instance is generated in mere moments (Better, Cheaper and Faster.) Reusing the
existing solution cut costs and time to deliver while simultaneously eliminating development
risk.

 Architectural focus— CodiScent’s technology and methodology lend themselves to focus on
defining solution architectures independent of implementing them and results in enforcement
of best practices throughout the code base. This produces greater separation of concerns
among components and more abstract and flexible components that are easier to repurpose
and reuse (Better.)

 Rolling refactoring—A common outcome of repeated iteration in the course of development
using standard practices is accumulation of code that should be refactored but which isn’t due
to expedience. Given the leverage and rapidity with which CodiScent solutions are built,
refactoring takes place over the course of development as a natural result of iterative
refinement. This results in cleaner, more efficient, more reusable code (Better) and the
attendant cost benefits that come with it (Cheaper.)

The advantages, cited above are primary benefits achievable with CodiScent. In addition, there are
second-level benefits to which the primary benefits contribute:

 Reduced Maintenance Effort—Reusability and Architectural Focus both contribute substantially
to the maintainability of CodiScent solutions. This enhances ROI significantly by reducing the
Total Cost of Ownership (TCO) of the solution, which includes acquisition, operational and
maintenance costs over its usable life.

 Staffing Leverage—The Architectural Focus and Reusability of CodiScent artifacts facilitate
optimal programming resource allocation in two ways: first, it allows different components of a
solution to be developed independently of one-another, possibly by programmers that are
expert in specific elements of the implementation technology and, secondly, it allows the most
experienced and capable programmers to develop core solution components that can then be
disseminated and incorporated in multiple projects. Having a library of reusable assets can
result in improved organizational agility in addition to all of the other benefits of CodiScent
technology.

 Migration and Transformation—Separation of concerns is a significant design goal for any
software system. Support for isolation and encapsulation, which is inherent in the CodiScent
approach, lends itself to architecting solutions that can be transformed to accommodate new
infrastructures or provide modified functionality with a minimum of revision.

The remainder of this whitepaper contains three sections:

 An overview of CodiScent’s tools and methodology

 Development use-cases:

 Database Compare Utility
 Browser-based Database Interface using Dojo components and Derby or Oracle

Databases

Page 5

 Enhancement of the previous use-case to incorporate temporal features that enable the
user to visualize the data as it looked at any time in the past or will look in the future

 COBOL text selective parser for processing COBOL copybooks.

 A summary and analysis of time and cost to implement these solutions, stressing the benefits
and ROI of CodiScent tools, as we have identified them, above.

Overview of CodiScent’s Tools and Methodology

Components
CodiScent’s tools include the Projector Template Generator (PTG), the Generative Engineering Studio
(GES), the Relational Metadata Inference Transformer (RMIT) and the Configurable Graphical Interface
Factory (CGIF).

The Projector Template Generator (PTG) is the heart of CodiScent’s delivery system. It employs clear,
intuitive and exceptionally flexible templates which, when linked to specifications (metadata that
describe solution requirements) can generate nearly anything in any format—code, data or text. PTG
output is independent of the rest of the CodiScent platform and can be further developed without using
it; however, there are significant benefits to continuing to use the platform throughout the developed
software’s life.

The Generative Engineering Studio (GES) is an IDE that facilitates building and managing the assets—
specifications, templates and generated code—associated with generative development projects. GES
works with many types of specifications from textual (XML/Excel/Text/SQL Result Sets) to diagrams or
graphical models and can easily interface with third party modeling and metadata repositories, as well.
Working with GES is designed to be completely consistent with CodiScent’s methodology and can
reduce development costs by as much as 60% or more as compared with alternative software
development methods. This results in high-quality software, delivered at very competitive cost and in
short time frames.

The GES employs these two components to link to and map specification data:

The Relational Metadata Inference Transformer (RMIT) is a graphical tool that enables GES users to
define a cohesive relational map for heterogeneous specification data structures so that they can be
used to drive generated output through PTG templates. The ability to coalesce multiple data source
types provides exceptional flexibility to build detailed and nuanced models of the problem domain to
which the CodiScent toolset is being applied. The RMIT also provides flexible analytical support for
viewing and ensuring metadata consistency prior to the code generation process.

The Configurable Graphical Interface Factory (CGIF) is a tool that enables a GES user to define
customized diagramming schemes and link them to specification data structures that can be accessed
through the RMIT and used to drive generation through the GES. This allows a user to employ graphical
models where they are clearer and easier to use than relational or XML data, for instance. Using the
CGIF meta-interface, the designer can define semantics including shapes, shape relationships
(containment/association) and the attributes with which each shape is associated.

Page 6

The schematic, below, shows the relationships among the components:

Below, is a screen shot of the GES IDE. The split-screen window contains a template on the top and the
code generated from it beneath. Changes in the generated code resulting from modifying the template
can be viewed in near-real time. Behind the popup window are configurable panels that provide access
to object trees for artifacts in the GES repository, such as specifications sources, graphical depictions
and templates.

Page 7

Methodology
CodiScent’s Agile Generative Engineering Methodology (CAGEM) combines acknowledged best-practice
project management practices with an agile lifecycle approach that balances rigorous planning and
control with agile, evolutionary solution design and implementation.

The flowchart, below, portrays CodiScent’s phased delivery approach:

CodiScent projects are conducted in the following phases:

1. Discovery and Analysis Phase: As with nearly any development methodology, the initial phase
focuses on assessing business needs and defining a solution that best fulfills the requirements.
Within CodiScent’s methodology, however, there is also a focus on identifying opportunities to
employ the generation tools to their maximum benefit. Specifically, work processes and
solution elements that repeat themselves within the problem domain are noted and evaluated
as candidates for generation.

Tasks performed in phase include producing a contextual overview of the problem domain,
assessing and documenting candidate requirements, performing a complexity evaluation,
identifying dependencies and estimating incremental benefits expected from each of the
solution’s major capabilities.

Page 8

Overall, this phase is designed to
a. identify all candidate functional and non-functional solution requirements,
b. assess the cost/benefit for each and select the function set to be included in the

solution,
c. define a preliminary solution architecture and produce a component inventory that will

provide the selected functionality,
d. understand interdependencies among the components,
e. produce baseline scope, time and cost estimates and
f. define a plan for mitigating implementation risks.

This project phase results in artifacts that can be consistent with any requirements modeling
tools that may be in use.

2. Solution Architecture Phase: with a proposed architecture in mind, the solution is decomposed
into the components that will be required to build it. A strategy for creating each component—
generate, hand-build or purchase and integrate—is identified.

3. Solution Prototyping—An initial implementation of a minimal but representative set of

functionality is developed. In this step, traditional programming techniques are applied to
create working prototypes of each of the solution’s major components.

4. Templating, generation and iterative evolution—This step is the one in which much of the

leverage that creates software Better, Cheaper and Faster is applied. In this step:
a. relevant parts of the code implemented for the prototype are translated (refactored)

into templates,
b. specifications are created which may incorporate database metadata and, potentially,

enrichment support data that describes the required solution in the context of the
planned architecture,

c. components are generated from the specifications and templates and then integrated
into a working solution,

d. the integrated solution is tested and revisions required to modify behavior or enhance
performance are noted,

e. changes to the specifications and templates are made and the solution components are
re-generated and re-tested and

f. this process is iterated until the integrated solution components meet functionality,
standardization and performance requirements.

5. Solution generation and integration—Once the specifications and templates are finalized the

complete set of solution components are generated, other components are integrated and the
full-breadth solution is integration-tested.

6. User Acceptance, Deployment and Turnover – The solution is subjected to user acceptance

review and then deployed and turned over to the user organization.

Page 9

CodiScent Use Cases

Database Compare Utility
Use Case: Produce a utility to compare the contents of two databases that contain identical structures
to identify differences between them. This utility is of value to users who need to assess the impact of
executing application functions or ETL processes where the before and after states are represented in
separate table, schema or database instances.

Functionality: Compare the data contained in two database instances and identify added, deleted and
changed records. For changed records, identify and highlight the columns in which values have been
changed. The output is an SQL result set, with the before and after records positioned one below the
other and a marker (‘***’) pre-pended to the changed data value.

Metadata: The metadata for this case consists of the SQL Server metadata extracted from the system
tables. No enrichment data was required for this case; however, had there not been primary and
foreign key constraints in the data, these could have been added to the specifications and imposed
exogenously.

Technology: This solution was implemented as SQL scripts to be executed through the MS SQL Server
management studio.

Here is a sample of the DB metadata in a tabular format:

The metadata describes data structures for Customer and Account tables, tied together by the
Customers’ account numbers, as indicated by the foreign entity and key entries for TAccountNo.

Below, is the PTG template for the SQL code that identifies records that exist in one instance (DL1—the
“Before” image) and not the other (DL2—the “After” image,) or vice-versa and the record pairs in which
one or more data values are different:

Page 10

Page 11

And here are some sample sections of the generated code. First, the code that detects missing rows:

Then, a sample of the code that identifies and highlights columns with different values:

Page 12

And finally, code that identifies inserted rows:

Here is the metadata for the second database example, housed in the same specification structure as
the previous example:

Page 13

And, here is the part of the code that detects deleted rows that was generated from it:

Here is the output that results from running the generated code. Each pair of rows shows the analogous
rows from both sources, as determined by matching their primary keys, and differences in column
values are highlighted by four asterisks:

Once the specifications (extracted from the database system tables) and the template were in place for
the initial solution, the second instance for the five-table example was generated from the GES in
literally, a moment.

Page 14

Dojo Browser-based Database Interface

Use Case: Create a browser-based interface that provides data browsing and editing of a relational
database with support for parent-child entities. This solution would be of value to anyone that needs to
maintain RDBMS data for which a pre-built GUI interface does not exist.

Functionality: The solution allows a user to filter, browse, insert, update or delete data in the database.
The data presentation automatically adjusts to account for table-level relationships represented as
constraints in the database or defined in enrichment data in the Specifications.

Solution features include:

 a menu for accessing main screens,

 tabular or single screens for each table for viewing, adding, deleting or updating table rows,

 data selection screens and drop down menu for type-bound attributes,

 validation checks at the record level,

 search and filter services,

 parent- child navigation links,

 parent-child and selector-entity composite displays, which appear as a parent record with child
rows in linked tabular views or a selected object and its entity details in a side panel and

 history or log table generation with supporting code to manage database transactions.

Metadata: The metadata for this case consists of the metadata extracted from the database system
tables. Enrichment data consists of information used to identify composite entities (logical entities
represented as multiple columns or rows in a number of related tables) and table- or entity-level
business rules.

Technology: This solution was implemented as an MVC architecture in Java web technology with a Dojo
interface layer.

This solution is a good example of how the interplay between enhanced specification data and
templates can be used to maintain architectural focus and minimize development time and
maintenance effort over the life of the solution.

The base specification data consists of the data structure of the database. The enhancement data
consists of identifying navigation links, identifying composite entities and assigning them to a specific
visual display objects in the application interface.

The templates create code that supports data selection, navigation, and display.

Page 15

Here is a diagram of the specification data model. Note that the tables in blue denote database
metadata and the tables in orange denote enhancement data:

Page 16

The screenshot, below shows the database metadata and some of the enhancement data behind the
specification data model:

Page 17

Here is one of the templates from which Dojo code is generated:

Page 18

Here is a screenshot from the JavaBean IDE showing the scope of the Dojo code generated by the GES:

Page 19

Finally, below are a series of screenshots of the generated solution:

Main Menu:

Page 20

Customer, single record view:

Customer, multi-record view:

Page 21

Customer-Order:

Page 22

Enhancement of an Interface to Incorporate Temporal Features

Use Case: The database used in the previous case has structures (parallel tables in which historical
images of transacted records for selected base tables are maintained) that allow for representation of
data as it appeared at any time in the past, as it appears currently or as it will appear at any point in the
future. The ability to view temporally-filtered data is valuable to users wishing to visualize the state of
the data juxtaposed with other events, such as a time series of financial market transactions. The ability
to view future states is an enhancement that may be useful for planning and modeling policies to be
implemented in the future, such as a proposed realignment of sales territories.

Functionality: The requirement for this use case is to add functionality to the previously-built interface
that preserves the users’ ability to filter, browse, enter or edit data and adds the ability to limit
operations to a subset of data as it either did or would appear at a selected point in time.

This solution accommodates significant complexities in terms of the SQL required to support the
temporal features. The solution features include:

 all of the interface features of the previous use case,

 data filtering functions that support normal SQL selection semantics and incorporate the ability
to apply them to a time-specific subset of the data

 complex joins, which return the relevant records for the join from each table, which adds a
significant set of constraints,

 data management filters that ensure that only relevant values appear in drop down and
selection controls and

 data transaction operations that update the temporal history for transactions on tables that are
logged.

Metadata: The metadata and enrichment data for this case are the same as for the previous example.
The specifications consist of metadata extracted from the database system tables and enrichment data
consists of information used to identify composite entities (logical entities represented in a number of
related tables) and table- or entity-level business rules.

Technology: This solution was implemented as an MVC architecture in Java web technology with a
JavaScript and DOJO interface layer.

Page 23

The GES interface showing the specification metadata behind the temporal database:

Here is a template that performs temporal data selection:

Page 24

And here is some of the SQL code generated from it:

Here is an example of temporally-filtered output from the enhanced solution, a Customer record, with
timestamp selection:

Page 25

Browser-Editor for COBOL File Data

Use Case: There is a tremendous amount of data residing in COBOL-formatted files. While mainframe
browsing and editing tools exist, many organizations would be well served to have a solution accessible
through a standard internet browser.

Functionality: This solution provides the ability to parse a copybook and populate the specifications
with metadata extracted from it in order to generate a program that has the ability to parse, view and
edit data stored in native COBOL files in a browser-based GUI interface.

Metadata: The metadata for this case consists of relational, tabular or XML data extracted from COBOL
copybooks. The parser that extracts the metadata is represented in a state machine diagram that after
relational transformation becomes a program that can parse copybooks and present data extracted
from COBOL data files.

Specification Enrichment Data: None was required in this case.

Technology: C# GUI interface.

Page 26

The diagram below depicts a state transition diagram that is used to control the parsing of the
relationships contained in a COBOL copybook:

Page 27

The diagram below shows the C# interface displaying a record from the COBOL file:

Page 28

Summary
The use-cases presented in this whitepaper each demonstrate the benefits we identified in the
Introduction. In each case, employing CodiScent tools and methodology enhanced the return on the
investment in implementing the solution. Here are some highlights of how benefits were realized in
some of the use-cases:

Coding Leverage
 This benefit accrues in every case. In the Database Compare use-case, the template, which

generates SQL code to identify records not in both tables or records containing differing values,
was 58 lines. 256 lines of code were generated from it for the two-table example and 1,762
lines of code were generated for the five-table example. The generated to hand-written ratio
and percentage of generated code for the examples are 4.6:1 and 81.5% and 30.4:1 and 96.8%,
respectively.

 In the Dojo Database Interface and Temporal Extension use-cases, a variety of code, including
SQL, Java and Java Script was generated at ratios exceeding 98% of the total code base.

Reuse
 The Database Compare use-case is an excellent example of CodiScent solution reusability. The

generation process and its ability to produce rapid, evolutionary, full-scale iterations
contributed to the ability to prototype, run, test and revise the solution as it was developed and
ultimately produce an error-free implementation. Overall, this solution took less than two hours
to develop and less than five minutes to replicate for a second instance.

 Reusability is also represented in the Temporal Extension use-case. When enhancing the
solution to incorporate temporal filtering, the coders were able to revise the code layer that
communicates with the database and make minimal modifications to the presentation layer.

Architectural Focus
 The Dojo Database Browser demonstrates this benefit in that the implementation closely maps

to the MVC model. It also provides good separation of responsibilities, which would allow
programmers to change the presentation of a logical entity quickly and easily by modifying the
specification data or structure without revising the templates.

Rolling Refactoring
 In the Database Compare use-case the initial solution was built to identify rows in which

changes had occurred and then enhanced to identify the columns in which they had occurred.
Modifying the solution templates and then regenerating the entire solution automatically
refactored the result.

Reduced Maintenance Effort
 The two versions of the Database Compare use-case demonstrate how CodiScent generative

engineering can minimize maintenance effort. The initial version of the solution identified
records that were missing or had changed values. The second version contained code to
annotate the columns in which the differing values occur. The maintenance effort to implement
the second version was limited to the SQL templates and was completely independent of any of
the other solution components. Similarly, the implementation of the second solution instance,

Page 29

consisting of the five-table example, was nearly maintenance-free, requiring only regeneration
of the specification dataset.

Staffing Leverage
 Although both solution instances in The Database Compare use-case were implemented by the

same programmer, it could have easily been someone else. This would have allowed the
original developer to focus on solving other problems while the second solution instance was
implemented.

 In the Dojo Database Browser use-case, templates used to generate Dojo interface code can be
shared and reused by multiple programming groups in a black box fashion. Therefore, the
templates can provide significant Staffing Leverage.

Migration and Transformation
 None of the use-cases are examples of Migration and Transformation, specifically; however, it is

easy to see how the Architectural Focus and extensibility of the CodiScent tools lend themselves
to supporting them. Such solutions require interfaces to the source and target data repositories
and a transformation engine in between and CodiScent generative solutions are perfect for
creating them. If the structure of either the source or target change, the solution can be
modified quickly to adjust the interface on either side, revise data transformations or revise the
source to target map, as necessary.

Page 30

Working With CodiScent
Given the proven value of employing CodiScent tools, methodology and services to deliver solutions,
what remains to be considered is how to select the best model to meet the need in a particular
situation. The service models cited in the initial whitepaper provide a range of options with varying
benefits:

 Turnkey Development is most appropriate for implementing a solution with the expectation of
infrequent updates or modifications. The benefit of Better, Cheaper and Faster development is
achieved in terms of the initial cost to implement and opportunities to realize the secondary
benefits of reduced maintenance and ability to migrate or transform the solution are preserved
as long as the original solution artifacts are maintained.

 Wizard Implementation is appropriate for implementing a solution with a moderate
expectation of updates or modifications and/or the desire to be able to generate additional
solution instances within a limited specification domain. As a result, Reusability and
Architectural Focus play a role in the delivered solution. In addition to the benefits associated
with Turnkey Development, reduced maintenance, an enhanced ability to migrate or transform
the solution and staffing leverage are also achieved.

 Productization is a combination of consultive and implementation services. In addition to
rationalizing fragmented and redundant work processes, this solution provides the immediate
and longer-term benefits of a Wizard Implementation.

 Control Center Implementation is a more comprehensive version of a Wizard implementation
that addresses a broader problem domain than is normally appropriate for a Wizard. It provides
a similar but deeper set of the same benefits as a Wizard Implementation

 GES Adoption provides the full set of benefits offered by the CodiScent toolset and
methodology. The services are similar to those of a substantial turnkey or control center
implementation but are largely focused on implementing a test case prototype as a training
exercise, conducting formal education sessions and mentoring selected customer IT staff.

Contact CodiScent
Visit our website to see working demos and learn more about our technology and services, contact
CodiScent via email or contact our principals directly:

Tel Aviv:
Zeev Chared, Founder and CEO
CodiScent Ltd.
www.codiscent.com
Mobile: 011 972 50 752 3070
Email: zeev@codiscent.com

New York:
Howard M. Wiener, Executive Vice President for the Americas
CodiScent Ltd.
www.codiscent.com
Office: (914) 723-1406
Mobile: (914) 419-5956
Email: howard.wiener@codiscent.com

http://codiscent.com/
mailto:info@codiscent.com
http://www.codiscent.com/
mailto:zeev@codiscent.com
http://www.codiscent.com/
mailto:mhoward.wiener@codiscent.com

